Show simple item record

dc.contributor.authorSahu, R.
dc.contributor.authorBhat, U.
dc.contributor.authorBatra, Nitin M
dc.contributor.authorSharona, H.
dc.contributor.authorVishal, B.
dc.contributor.authorSarkar, S.
dc.contributor.authorDevi, Assa Aravindh Sasikala
dc.contributor.authorPeter, S. C.
dc.contributor.authorRoqan, Iman S.
dc.contributor.authorDa Costa, Pedro M. F. J.
dc.contributor.authorDatta, Ranjan
dc.date.accessioned2017-03-20T08:46:09Z
dc.date.available2017-03-20T08:46:09Z
dc.date.issued2017-03-08
dc.identifier.citationSahu R, Bhat U, Batra NM, Sharona H, Vishal B, et al. (2017) Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys. Journal of Applied Physics 121: 105101. Available: http://dx.doi.org/10.1063/1.4977111.
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.doi10.1063/1.4977111
dc.identifier.urihttp://hdl.handle.net/10754/623040
dc.description.abstractWe report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition cross over at ∼50 at. % of Mo and W in ReS2 in both monolayer and bulk form, respectively. Experimentally, two different types of structural modulations at 50% and a modulation corresponding to trimerization at 75% alloy composition are observed for RexMo1-xS2 and only one type of modulation is observed at the 50% RexW1-xS2 alloy system. The 50% alloy system is found to be a suitable monolithic candidate for metal semiconductor transition with minute external perturbation. ReS2 is known to be in the 2D Peierls distorted 1Td structure and forms a chain like superstructure. Incorporation of Mo and W atoms into the ReS2 lattice modifies the metal-metal hybridization between the cations and influences the structural modulation and electronic properties of the system. The results offer yet another effective way to tune the electronic structure and poly-type phases of this class of materials other than intercalation, strain, and vertical stacking arrangement.
dc.description.sponsorshipThe authors at JNCASR are grateful to Professor C. N. R. Rao for the constant support and advanced microscopy facility. R.D. thanks KAUST aberration corrected microscopy core lab facility and a Sabbatical Funding for the visit. For computer time, this research used the resources of the Supercomputing Laboratory at KAUST (Project No. k1143). I.S.R. and P.M.F.J.C. thank KAUST for financial support. S.S. thanks the Council of Scientific and Industrial Research for research fellowship and S.C.P. thanks the DST fast track (Grant No. SB/FT/Cs-07/2011) for the financial support.
dc.publisherAIP Publishing
dc.relation.urlhttp://aip.scitation.org/doi/full/10.1063/1.4977111
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Applied Physics and may be found at http://doi.org/10.1063/1.4977111.
dc.titleNature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys
dc.typeArticle
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSemiconductor and Material Spectroscopy (SMS) Laboratory
dc.identifier.journalJournal of Applied Physics
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInternational Centre for Materials Science, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
dc.contributor.institutionNew Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
kaust.personBatra, Nitin M
kaust.personDevi, Assa Aravindh Sasikala
kaust.personRoqan, Iman S.
kaust.personDa Costa, Pedro M. F. J.
kaust.personDatta, Ranjan
kaust.grant.numberProject No. k1143
refterms.dateFOA2018-03-08T00:00:00Z
dc.date.published-online2017-03-08
dc.date.published-print2017-03-14


Files in this item

Thumbnail
Name:
12E4977111.pdf
Size:
4.267Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record