• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Significance of High Resolution GHRSST on prediction of Indian Summer Monsoon

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1-s2.0-S0273117717301229-main.pdf
    Size:
    711.0Kb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Jangid, Buddhi Prakash
    Kumar, Prashant
    Attada, Raju
    Kumar, Raj
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Physical Science and Engineering (PSE) Division
    Date
    2017-02-24
    Online Publication Date
    2017-02-24
    Print Publication Date
    2017-05
    Permanent link to this record
    http://hdl.handle.net/10754/622950
    
    Metadata
    Show full item record
    Abstract
    In this study, the Weather Research and Forecasting (WRF) model was used to assess the importance of very high resolution sea surface temperature (SST) on seasonal rainfall prediction. Two different SST datasets available from the National Centers for Environmental Prediction (NCEP) global model analysis and merged satellite product from Group for High Resolution SST (GHRSST) are used as a lower boundary condition in the WRF model for the Indian Summer Monsoon (ISM) 2010. Before using NCEP SST and GHRSST for model simulation, an initial verification of NCEP SST and GHRSST are performed with buoy measurements. It is found that approximately 0.4 K root mean square difference (RMSD) in GHRSST and NCEP SST when compared with buoy observations available over the Indian Ocean during 01 May to 30 September 2010. Our analyses suggest that use of GHRSST as lower boundary conditions in the WRF model improve the low level temperature, moisture, wind speed and rainfall prediction over ISM region. Moreover, temporal evolution of surface parameters such as temperature, moisture and wind speed forecasts associated with monsoon is also improved with GHRSST forcing as a lower boundary condition. Interestingly, rainfall prediction is improved with the use of GHRSST over the Western Ghats, which mostly not simulated in the NCEP SST based experiment.
    Citation
    Jangid BP, Kumar P, Raju A, Kumar R (2017) Significance of High Resolution GHRSST on prediction of Indian Summer Monsoon. Advances in Space Research. Available: http://dx.doi.org/10.1016/j.asr.2017.02.025.
    Sponsors
    The authors would like to thank Director, SAC. Authors are also thankful to Dr. Neeraj Agarwal for his motivation to use GHRSST in WRF model. Authors are thankful to NCAR for WRF model. The NCEP global model analyses are obtained from Data Support Section of the Computational and Information Systems Laboratory (CISL) at NCAR. TRMM data are obtained from http://daac.gsfc.nasa.gov/data/datasets. Authors are also thankful to Tropical Atmosphere Ocean project office of NOAA/PMEL to provide RAMA (Research Moored Array for African-Asian-Australian Monsson Analysis and Prediction) Buoy observations. www.pmel.noaa.gov/tao/data_deliv/deliv-nojava-rama.html.
    Publisher
    Elsevier BV
    Journal
    Advances in Space Research
    DOI
    10.1016/j.asr.2017.02.025
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0273117717301229
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.asr.2017.02.025
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.