Show simple item record

dc.contributor.authorHeilbron, Fabian Caba
dc.contributor.authorNiebles, Juan Carlos
dc.contributor.authorGhanem, Bernard
dc.date.accessioned2017-02-15T08:32:14Z
dc.date.available2017-02-15T08:32:14Z
dc.date.issued2016-12-13
dc.identifier.citationHeilbron FC, Niebles JC, Ghanem B (2016) Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Available: http://dx.doi.org/10.1109/CVPR.2016.211.
dc.identifier.doi10.1109/CVPR.2016.211
dc.identifier.urihttp://hdl.handle.net/10754/622892
dc.description.abstractIn many large-scale video analysis scenarios, one is interested in localizing and recognizing human activities that occur in short temporal intervals within long untrimmed videos. Current approaches for activity detection still struggle to handle large-scale video collections and the task remains relatively unexplored. This is in part due to the computational complexity of current action recognition approaches and the lack of a method that proposes fewer intervals in the video, where activity processing can be focused. In this paper, we introduce a proposal method that aims to recover temporal segments containing actions in untrimmed videos. Building on techniques for learning sparse dictionaries, we introduce a learning framework to represent and retrieve activity proposals. We demonstrate the capabilities of our method in not only producing high quality proposals but also in its efficiency. Finally, we show the positive impact our method has on recognition performance when it is used for action detection, while running at 10FPS.
dc.description.sponsorshipResearch in this publication was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research, the Stanford AI Lab-Toyota Center for Artificial Intelligence Research, and a Google Faculty Research Award (2015).
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://ieeexplore.ieee.org/document/7780580/
dc.subjectfeature extraction
dc.subjectimage recognition
dc.subjectimage representation
dc.subjectimage retrieval
dc.subjectDictionaries
dc.subjectFeature extraction
dc.subjectImage reconstruction
dc.subjectProposals
dc.subjectTraining
dc.subjectVideo sequences
dc.subjectVideos
dc.titleFast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentVisual Computing Center (VCC)
dc.identifier.journal2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dc.contributor.institutionDepartment of Computer Science, Stanford University
dc.contributor.institutionUniversidad del Norte, Colombia
kaust.personHeilbron, Fabian Caba
kaust.personGhanem, Bernard
dc.date.published-online2016-12-13
dc.date.published-print2016-06


This item appears in the following Collection(s)

Show simple item record