• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Manuscript-revised-2.pdf
    Size:
    1.842Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Atef, Nour
    Kukkadapu, Goutham
    Mohamed, Samah cc
    Rashidi, Mariam Al
    Banyon, Colin
    Mehl, Marco
    Heufer, Karl Alexander
    Nasir, Ehson Fawad cc
    Alfazazi, Adamu cc
    Das, Apurba K.
    Westbrook, Charles K.
    Pitz, William J.
    Lu, Tianfeng
    Farooq, Aamir cc
    Sung, Chih-Jen
    Curran, Henry J. cc
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Chemical Kinetics & Laser Sensors Laboratory
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-02-05
    Online Publication Date
    2017-02-05
    Print Publication Date
    2017-04
    Permanent link to this record
    http://hdl.handle.net/10754/622881
    
    Metadata
    Show full item record
    Abstract
    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.
    Citation
    Atef N, Kukkadapu G, Mohamed SY, Rashidi MA, Banyon C, et al. (2017) A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combustion and Flame 178: 111–134. Available: http://dx.doi.org/10.1016/j.combustflame.2016.12.029.
    Sponsors
    The authors are grateful of insightful scientific discussions with Dr. Zhandong Wang (KAUST), Dr. Kuiwen Zhang (NUIG), Dr. John Bugler (NUIG), and Dr. Jihad Badra (Saudi Aramco). The presented work was supported by Saudi Aramco under the FUELCOM program and by the King Abdullah University of Science and Technology (KAUST) with competitive research funding given to the Clean Combustion Research Center (CCRC). The work at UCONN was supported by the National Science Foundation under Grant No. CBET-1402231. The work at LLNL was supported by the U.S. Department of Energy, Vehicle Technologies Office, program managers Gurpreet Singh and Leo Breton and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratories under contract DE-AC52-07NA27344
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2016.12.029
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0010218016304059
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2016.12.029
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.