Show simple item record

dc.contributor.authorWacks, Daniel H.
dc.contributor.authorChakraborty, Nilanjan
dc.contributor.authorKlein, Markus
dc.contributor.authorArias, Paul G.
dc.contributor.authorIm, Hong G.
dc.date.accessioned2017-01-30T13:02:47Z
dc.date.available2017-01-30T13:02:47Z
dc.date.issued2016-12-02
dc.identifier.citationWacks DH, Chakraborty N, Klein M, Arias PG, Im HG (2016) Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Physical Review Fluids 1. Available: http://dx.doi.org/10.1103/PhysRevFluids.1.083401.
dc.identifier.issn2469-990X
dc.identifier.doi10.1103/PhysRevFluids.1.083401
dc.identifier.urihttp://hdl.handle.net/10754/622817
dc.description.abstractThe distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
dc.description.sponsorshipN.C. and D.H.W. are grateful to EPSRC and N8/ARCHER. P.G.A. and H.G.I. were sponsored by KAUST and made use of the resources of the KAUST Supercomputing Laboratory and computer clusters.
dc.publisherAmerican Physical Society (APS)
dc.relation.urlhttp://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.1.083401
dc.rightsArchived with thanks to Physical Review Fluids
dc.titleFlow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentComputational Reacting Flow Laboratory (CRFL)
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalPhysical Review Fluids
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionSchool of Mechanical and Systems Engineering, University of Newcastle, Claremont Road, Newcastle NE1 7RU, United Kingdom
dc.contributor.institutionFakultat fur Luft- und Raumfahrttechnik, Universitat der Bundeswehr Munchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
dc.contributor.institutionDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA
kaust.personIm, Hong G.
refterms.dateFOA2018-06-13T16:48:53Z


Files in this item

Thumbnail
Name:
PhysRevFluids.1.083401.pdf
Size:
3.873Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record