• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Minenkov, Yury cc
    Sliznev, Valery V.
    Cavallo, Luigi cc
    KAUST Department
    Chemical Science Program
    KAUST Catalysis Center (KCC)
    Physical Science and Engineering (PSE) Division
    Date
    2017-01-17
    Online Publication Date
    2017-01-17
    Print Publication Date
    2017-02-06
    Permanent link to this record
    http://hdl.handle.net/10754/622806
    
    Metadata
    Show full item record
    Abstract
    Accurate gas phase formation enthalpies, ΔHf, of metal oxides and halides are critical for the prediction of the stability of high temperature materials used in the aerospace and nuclear industries. Unfortunately, the experimental ΔHf values of these compounds in the most used databases, such as the NIST-JANAF database, are often reported with large inaccuracy, while some other ΔHf values clearly differ from the value predicted by CCSD(T) methods. To address this point, in this work we systematically predicted the ΔHf values of a series of these compounds having a group 4, 6, or 14 metal. The ΔHf values in question were derived within a composite Feller-Dixon-Peterson (FDP) scheme based protocol that combines the DLPNO-CCSD(T) enthalpy of ad hoc designed reactions and the experimental ΔHf values of few reference complexes. In agreement with other theoretical studies, we predict the ΔHf values for TiOCl2, TiOF2, GeF2, and SnF4 to be significantly different from the values tabulated in NIST-JANAF and other sources, which suggests that the tabulated experimental values are inaccurate. Similarly, the predicted ΔHf values for HfCl2, HfBr2, HfI2, MoOF4, MoCl6, WOF4, WOCl4, GeO2, SnO2, PbBr4, PbI4, and PbO2 also clearly differ from the tabulated experimental values, again suggesting large inaccuracy in the experimental values. In the case when largely different experimental values are available, we point to the value that is in better agreement with our results. We expect the ΔHf values reported in this work to be quite accurate, and thus, they might be used in thermodynamic calculations, because the effects from core correlation, relativistic effects, and basis set incompleteness were included in the DLPNO-CCSD(T) calculations. T1 and T2 values were thoroughly monitored as indicators of the quality of the reference Hartree-Fock orbitals (T1) and potential multireference character of the systems (T2).
    Citation
    Minenkov Y, Sliznev VV, Cavallo L (2017) Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products. Inorganic Chemistry. Available: http://dx.doi.org/10.1021/acs.inorgchem.6b02441.
    Sponsors
    We gratefully acknowledge Edriss Chermak, SABIC, for helpful discussions. We also gratefully acknowledge Frank Neese and Frank Wennmohs, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, for providing us the prerelease version of ORCA. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia.
    Publisher
    American Chemical Society (ACS)
    Journal
    Inorganic Chemistry
    DOI
    10.1021/acs.inorgchem.6b02441
    Additional Links
    http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.6b02441
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.inorgchem.6b02441
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program; KAUST Catalysis Center (KCC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.