Show simple item record

dc.contributor.authorAdhikari, Aniruddha
dc.contributor.authorEliason, Jeffrey K.
dc.contributor.authorSun, Jingya
dc.contributor.authorBose, Riya
dc.contributor.authorFlannigan, David J.
dc.contributor.authorMohammed, Omar F.
dc.date.accessioned2017-01-29T13:51:38Z
dc.date.available2017-01-29T13:51:38Z
dc.date.issued2017-01-03
dc.identifier.citationAdhikari A, Eliason JK, Sun J, Bose R, Flannigan DJ, et al. (2017) Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique. ACS Applied Materials & Interfaces 9: 3–16. Available: http://dx.doi.org/10.1021/acsami.6b12301.
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.doi10.1021/acsami.6b12301
dc.identifier.urihttp://hdl.handle.net/10754/622779
dc.description.abstractFour-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.
dc.description.sponsorshipThe work was supported by the King Abdullah University of Science and Technology. Funding for work conducted at the University of Minnesota was provided by the Arnold and Mabel Beckman Foundation in the form of a Beckman Young Investigator Award.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttp://pubs.acs.org/doi/full/10.1021/acsami.6b12301
dc.subjectAtomic Resolution
dc.subjectSurface Dynamics
dc.subjectCharge Carrier Dynamics
dc.subjectElectron Impact Dynamics
dc.subject4D Ultrafast Electron Microscopy
dc.subjectEnergy Loss Mechanism
dc.titleFour-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique
dc.typeArticle
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentUltrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
dc.identifier.journalACS Applied Materials & Interfaces
dc.contributor.institutionDepartment of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.
kaust.personAdhikari, Aniruddha
kaust.personSun, Jingya
kaust.personBose, Riya
kaust.personMohammed, Omar F.
dc.date.published-online2017-01-03
dc.date.published-print2017-01-11


This item appears in the following Collection(s)

Show simple item record