Type
Conference PaperKAUST Department
Visual Computing Center (VCC)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
Date
2016-12-13Online Publication Date
2016-12-13Print Publication Date
2016-06Permanent link to this record
http://hdl.handle.net/10754/622775
Metadata
Show full item recordAbstract
Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.Citation
Zhang T, Bibi A, Ghanem B (2016) In Defense of Sparse Tracking: Circulant Sparse Tracker. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Available: http://dx.doi.org/10.1109/CVPR.2016.421.Sponsors
Research in this publication was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research.Additional Links
http://ieeexplore.ieee.org/document/7780790/ae974a485f413a2113503eed53cd6c53
10.1109/CVPR.2016.421