3D Part-Based Sparse Tracker with Automatic Synchronization and Registration
Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Visual Computing Center (VCC)
Date
2016-12-13Online Publication Date
2016-12-13Print Publication Date
2016-06Permanent link to this record
http://hdl.handle.net/10754/622773
Metadata
Show full item recordAbstract
In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.Citation
Bibi A, Zhang T, Ghanem B (2016) 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Available: http://dx.doi.org/10.1109/CVPR.2016.160.Sponsors
Research in this publication was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research.Additional Links
http://ieeexplore.ieee.org/document/7780529/ae974a485f413a2113503eed53cd6c53
10.1109/CVPR.2016.160