• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Lei
    Rose, Bradley Daniel cc
    Liu, Yao
    Nahid, Masrur M.
    Gann, Eliot
    Ly, Jack
    Zhao, Wei cc
    Rosa, Stephen J.
    Russell, Thomas P.
    Facchetti, Antonio
    McNei, Christopher R.
    Bredas, Jean-Luc cc
    Briseno, Alejandro L.
    KAUST Department
    KAUST Solar Center (KSC)
    Laboratory for Computational and Theoretical Chemistry of Advanced Materials
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-11-21
    Online Publication Date
    2016-11-21
    Print Publication Date
    2016-12-13
    Permanent link to this record
    http://hdl.handle.net/10754/622756
    
    Metadata
    Show full item record
    Abstract
    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.
    Citation
    Zhang L, Rose BD, Liu Y, Nahid MM, Gann E, et al. (2016) Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chemistry of Materials 28: 8580–8590. Available: http://dx.doi.org/10.1021/acs.chemmater.6b03379.
    Sponsors
    L.Z., J. L., S.J.R., and A.L.B thank the Office of Naval Research (N0001471410053) and the National Science Foundation (DMR-1508627) for support of this work; Y.L. and T.P.R. acknowledge the support of the Office of Naval Research under contract N00014-15-1-2244; C.M. acknowledges funding from the Australian Research Council (FT10010075, DP130102616); B.D.R. and J.L.B. acknowledge the support from ONR-Global, Award N62909-15-1-2003, and from competitive research funding of King Abdullah University of Science and Technology. Parts of this research were undertaken on the soft X-ray and SAXS/WAXS beamlines of the Australian Synchrotron. L.Z. thanks the Fundamental Research Funds for the Central Universities (ZY1636).
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/acs.chemmater.6b03379
    Additional Links
    http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b03379
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.chemmater.6b03379
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.