• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhong, Yufei
    Munir, Rahim cc
    Albalawi, Ahmed
    Sheikh, Arif D. cc
    Yu, Liyang
    Tang, Ming-Chun
    Hu, Hanlin cc
    Laquai, Frédéric cc
    Amassian, Aram cc
    KAUST Department
    Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Organic Electronics and Photovoltaics Group
    Physical Science and Engineering (PSE) Division
    Date
    2016-10-27
    Online Publication Date
    2016-10-27
    Print Publication Date
    2016-11-11
    Permanent link to this record
    http://hdl.handle.net/10754/622751
    
    Metadata
    Show full item record
    Abstract
    Electron-transporting layers in today's stateof-the-art n-i-p organohalide perovskite solar cells are almost exclusively made of metal oxides. Here, we demonstrate a novel mesostructured fullerene-based electron-transporting material (ETM) that is crystalline, hydrophobic, and cross-linked, rendering it solvent-and heat resistant for subsequent perovskite solar cell fabrication The fullerene ETM is shown to enhance the structural and electronic properties of the CH3NH3PbI3 layer grown atop, reducing its Urbach energy from similar to 26 to 21 meV, while also increasing crystallite size and improving texture. The resulting mesostructured n-i-p solar cells achieve reduced recombination, improved device-to-device variation, reduced hysteresis, and a power conversion efficiency above 15%, surpassing the performance of similar devices prepared using mesoporous TiO2 and well above the performance of planar heterojunction devices on amorphous or crystalline [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). This work is the first demonstration of a viable, hydrophobic, and high-performance mesostructured electron-accepting contact to work effectively in n-i-p perovskite solar cells.
    Citation
    Zhong Y, Munir R, Balawi AH, Sheikh AD, Yu L, et al. (2016) Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells. ACS Energy Letters 1: 1049–1056. Available: http://dx.doi.org/10.1021/acsenergylett.6b00455.
    Sponsors
    This work was supported by the King Abdullah University of Science and Technology, A.H. Balawi and F. Laquai thank K. Vandewal and M. Baier for contributing to the setup for photothermal deflection spectroscopy (PDS). Part of this work was performed at D-line at the Cornell High Energy Synchrotron Source (CHESS) at Cornell University. CHESS is supported by NSF and NIH/NIGMS via NSF Award DMR-1332208. Dr. Detlef-M. Smilgies and Dr. Ruipeng Li from CHESS are thanked for their assistance with beamline setup for the GIWAXS measurements.
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Energy Letters
    DOI
    10.1021/acsenergylett.6b00455
    Additional Links
    pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00455
    ae974a485f413a2113503eed53cd6c53
    10.1021/acsenergylett.6b00455
    Scopus Count
    Collections
    Articles; Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC); Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.