Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering
Name:
Shinagawa_et_al-2016-ChemSusChem.pdf
Size:
1.626Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Shinagawa, Tatsuya
Takanabe, Kazuhiro

KAUST Department
Catalysis for Energy Conversion (CatEC)Chemical Science Program
KAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2017-03-09Online Publication Date
2017-03-09Print Publication Date
2017-04-10Permanent link to this record
http://hdl.handle.net/10754/622743
Metadata
Show full item recordAbstract
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.Citation
Shinagawa T, Takanabe K (2016) Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering. ChemSusChem. Available: http://dx.doi.org/10.1002/cssc.201601583.Sponsors
The research reported in this work was supported by the King Abdullah University of Science and Technology (KAUST). Cover figure was produced by Ivan Gromicho, scientific illustrator at KAUST.Publisher
WileyJournal
ChemSusChemAdditional Links
http://onlinelibrary.wiley.com/doi/10.1002/cssc.201601583/abstractae974a485f413a2113503eed53cd6c53
10.1002/cssc.201601583