Show simple item record

dc.contributor.authorLee, Kyu Tae
dc.contributor.authorYao, Yuan
dc.contributor.authorHe, Junwen
dc.contributor.authorFisher, Brent
dc.contributor.authorSheng, Xing
dc.contributor.authorLumb, Matthew
dc.contributor.authorXu, Lu
dc.contributor.authorAnderson, Mikayla A.
dc.contributor.authorScheiman, David
dc.contributor.authorHan, Seungyong
dc.contributor.authorKang, Yongseon
dc.contributor.authorGumus, Abdurrahman
dc.contributor.authorBahabry, Rabab R.
dc.contributor.authorLee, Jung Woo
dc.contributor.authorPaik, Ungyu
dc.contributor.authorBronstein, Noah D.
dc.contributor.authorAlivisatos, A. Paul
dc.contributor.authorMeitl, Matthew
dc.contributor.authorBurroughs, Scott
dc.contributor.authorHussain, Muhammad Mustafa
dc.contributor.authorLee, Jeong Chul
dc.contributor.authorNuzzo, Ralph G.
dc.contributor.authorRogers, John A.
dc.date.accessioned2017-01-09T11:52:22Z
dc.date.available2017-01-09T11:52:22Z
dc.date.issued2016-12-05
dc.identifier.citationLee K-T, Yao Y, He J, Fisher B, Sheng X, et al. (2016) Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation. Proceedings of the National Academy of Sciences 113: E8210–E8218. Available: http://dx.doi.org/10.1073/pnas.1617391113.
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.doi10.1073/pnas.1617391113
dc.identifier.urihttp://hdl.handle.net/10754/622666
dc.description.abstractEmerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (
dc.description.sponsorshipThis work is part of the
dc.publisherProceedings of the National Academy of Sciences
dc.relation.urlhttp://www.pnas.org/content/113/51/E8210
dc.subjectConcentration optics
dc.subjectDiffuse light capture
dc.subjectMultijunction solar cells
dc.subjectPhotovoltaics
dc.titleConcentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentIntegrated Nanotechnology Lab
dc.identifier.journalProceedings of the National Academy of Sciences
dc.contributor.institutionDepartment of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
dc.contributor.institutionFrederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
dc.contributor.institutionDepartment of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
dc.contributor.institutionSemprius, Durham, NC, 27713, United States
dc.contributor.institutionDepartment of Electronic Engineering, Tsinghua University, Beijing, 100084, China
dc.contributor.institutionGeorge Washington University, Washington, DC, 20037, United States
dc.contributor.institutionUS Naval Research Laboratory, Washington, DC, 20375, United States
dc.contributor.institutionDepartment of Materials Science and Engineering, Hanyang University, Seoul, 133-791, South Korea
dc.contributor.institutionDepartment of Energy Engineering, Hanyang University, Seoul, 133-791, South Korea
dc.contributor.institutionDepartment of Chemistry, University of California, Berkeley, CA, 94720, United States
dc.contributor.institutionDepartment of Materials Science and Engineering, University of California, Berkeley, CA, 94720, United States
dc.contributor.institutionKavli Energy NanoScience Institute, University of California, Berkeley, CA, 94720, United States
dc.contributor.institutionMaterials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
kaust.personGumus, Abdurrahman
kaust.personBahabry, Rabab R.
kaust.personHussain, Muhammad Mustafa
kaust.grant.numberGEN/1/4014-01-01
dc.date.published-online2016-12-05
dc.date.published-print2016-12-20


This item appears in the following Collection(s)

Show simple item record