Show simple item record

dc.contributor.authorUysal, Ismail Enes
dc.contributor.authorUlku, Huseyin Arda
dc.contributor.authorBagci, Hakan
dc.date.accessioned2017-01-02T09:55:33Z
dc.date.available2017-01-02T09:55:33Z
dc.date.issued2016-08-11
dc.identifier.citationUysal IE, Arda Ülkü H, Bağci H (2016) Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver. Journal of the Optical Society of America A 33: 1747. Available: http://dx.doi.org/10.1364/JOSAA.33.001747.
dc.identifier.issn1084-7529
dc.identifier.issn1520-8532
dc.identifier.doi10.1364/JOSAA.33.001747
dc.identifier.urihttp://hdl.handle.net/10754/622612
dc.description.abstractTransient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium's permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.
dc.publisherThe Optical Society
dc.relation.urlhttps://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-33-9-1747
dc.titleTransient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalJournal of the Optical Society of America A
dc.contributor.institutionDepartment of Electronics Engineering, Gebze Technical University, Kocaeli, Turkey
kaust.personUysal, Ismail Enes
kaust.personUlku, Huseyin Arda
kaust.personBagci, Hakan
dc.date.published-online2016-08-11
dc.date.published-print2016-09-01


This item appears in the following Collection(s)

Show simple item record