• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Network Monitoring as a Streaming Analytics Problem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Gupta, Arpit
    Birkner, Rüdiger
    Canini, Marco cc
    Feamster, Nick
    Mac-Stoker, Chris
    Willinger, Walter
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Computer Science Program
    Date
    2016-11-02
    Online Publication Date
    2016-11-02
    Print Publication Date
    2016
    Permanent link to this record
    http://hdl.handle.net/10754/622573
    
    Metadata
    Show full item record
    Abstract
    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world's largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.
    Citation
    Gupta A, Birkner R, Canini M, Feamster N, Mac-Stoker C, et al. (2016) Network Monitoring as a Streaming Analytics Problem. Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets ’16. Available: http://dx.doi.org/10.1145/3005745.3005748.
    Sponsors
    We thank our shepherd, Fadel Adib, the anonymous reviewers, Srinivas Narayana, Ankita Pawar, Rick Porter, Jennifer Rexford for for feedback and comments. This research was supported by National Science Foundation Awards CNS-1539920, and by European Union’s Horizon 2020 program under the ENDEAVOUR project (grant agree- ment 644960).
    Publisher
    Association for Computing Machinery (ACM)
    Journal
    Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets '16
    Conference/Event name
    15th ACM Workshop on Hot Topics in Networks, HotNets 2016
    DOI
    10.1145/3005745.3005748
    Additional Links
    http://dl.acm.org/citation.cfm?doid=3005745.3005748
    ae974a485f413a2113503eed53cd6c53
    10.1145/3005745.3005748
    Scopus Count
    Collections
    Conference Papers; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.