Show simple item record

dc.contributor.authorAli, Konpal S.
dc.contributor.authorElsawy, Hesham
dc.contributor.authorAlouini, Mohamed-Slim
dc.date.accessioned2017-01-02T09:55:30Z
dc.date.available2017-01-02T09:55:30Z
dc.date.issued2016-08-24
dc.identifier.citationAli KS, ElSawy H, Alouini M-S (2016) Modeling Cellular Networks with Full Duplex D2D Communication: A Stochastic Geometry Approach. IEEE Transactions on Communications: 1–1. Available: http://dx.doi.org/10.1109/TCOMM.2016.2601912.
dc.identifier.issn0090-6778
dc.identifier.doi10.1109/TCOMM.2016.2601912
dc.identifier.urihttp://hdl.handle.net/10754/622566
dc.description.abstractFull-duplex (FD) communication is optimistically promoted to double the spectral efficiency if sufficient self-interference cancellation (SIC) is achieved. However, this is not true when deploying FD-communication in a large-scale setup due to the induced mutual interference. Therefore, a large-scale study is necessary to draw legitimate conclusions about gains associated with FD-communication. This paper studies the FD operation for underlay device-to-device (D2D) communication sharing the uplink resources in cellular networks. We propose a disjoint fine-tuned selection criterion for the D2D and FD modes of operation. Then, we develop a tractable analytical paradigm, based on stochastic geometry, to calculate the outage probability and rate for cellular and D2D users. The results reveal that even in the case of perfect SIC, due to the increased interference injected to the network by FD-D2D communication, having all proximity UEs transmit in FD-D2D is not beneficial for the network. However, if the system parameters are carefully tuned, non-trivial network spectral-efficiency gains (64% shown) can be harvested. We also investigate the effects of imperfect SIC and D2D-link distance distribution on the harvested FD gains.
dc.description.sponsorshipThis work was supported by the KAUST Sensor Research Initiative sponsored by the KAUST Office of Competitive Research. The associate editor coordinating the review of this paper and approving it for publication was S. Durrani.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectDevice to device (D2D) communication
dc.subjectfull duplex
dc.subjectinterference characterization
dc.subjectstochastic geometry
dc.titleModeling Cellular Networks with Full Duplex D2D Communication: A Stochastic Geometry Approach
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalIEEE Transactions on Communications
kaust.personAli, Konpal S.
kaust.personElsawy, Hesham
kaust.personAlouini, Mohamed-Slim
dc.date.published-online2016-08-24
dc.date.published-print2016-10


This item appears in the following Collection(s)

Show simple item record