Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment
dc.contributor.author | Liu, Dayan | |
dc.contributor.author | Gibaru, Olivier | |
dc.contributor.author | Perruquetti, Wilfrid | |
dc.contributor.author | Laleg-Kirati, Taous-Meriem | |
dc.date.accessioned | 2017-01-02T09:55:29Z | |
dc.date.available | 2017-01-02T09:55:29Z | |
dc.date.issued | 2015-03-31 | |
dc.identifier.citation | Liu D-Y, Gibaru O, Perruquetti W, Laleg-Kirati T-M (2015) Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment. IEEE Transactions on Automatic Control 60: 2945–2960. Available: http://dx.doi.org/10.1109/TAC.2015.2417852. | |
dc.identifier.issn | 0018-9286 | |
dc.identifier.issn | 1558-2523 | |
dc.identifier.doi | 10.1109/TAC.2015.2417852 | |
dc.identifier.uri | http://hdl.handle.net/10754/622551 | |
dc.description.abstract | The integer order differentiation by integration method based on the Jacobi orthogonal polynomials for noisy signals was originally introduced by Mboup, Join and Fliess. We propose to extend this method from the integer order to the fractional order to estimate the fractional order derivatives of noisy signals. Firstly, two fractional order differentiators are deduced from the Jacobi orthogonal polynomial filter, using the Riemann-Liouville and the Caputo fractional order derivative definitions respectively. Exact and simple formulae for these differentiators are given by integral expressions. Hence, they can be used for both continuous-time and discrete-time models in on-line or off-line applications. Secondly, some error bounds are provided for the corresponding estimation errors. These bounds allow to study the design parameters' influence. The noise error contribution due to a large class of stochastic processes is studied in discrete case. The latter shows that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, whose mean value and variance functions are polynomial time-varying. Thanks to the design parameters analysis, the proposed fractional order differentiators are significantly improved by admitting a time-delay. Thirdly, in order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, the proposed differentiator based on the Riemann-Liouville fractional order derivative is used to estimate the state of a fractional order system and numerical simulations illustrate the accuracy and the robustness with respect to corrupting noises. | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.url | http://ieeexplore.ieee.org/document/7072464 | |
dc.subject | , Jacobi orthogonal polynomial filter | |
dc.subject | Digital fractional order differentiator | |
dc.subject | Error analysis | |
dc.subject | Error analysis | |
dc.subject | Recursive algorithm | |
dc.subject | Time-delay | |
dc.title | Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment | |
dc.type | Article | |
dc.contributor.department | Computational Bioscience Research Center (CBRC) | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.identifier.journal | IEEE Transactions on Automatic Control | |
dc.contributor.institution | INSA Centre Val de Loire, Université d'Orléans, Bourges Cedex, 18022, France | |
dc.contributor.institution | LSIS (CNRS, UMR 7296), Arts et Métiers Paris Tech, Lille Cedex, 59046, France | |
dc.contributor.institution | Équipe Projet Non-A, INRIA Lille- Nord Europe, Parc Scientifique de la Haute Borne, Villeneuve d'Ascq, 59650, France | |
dc.contributor.institution | CRIStAL (CNRS, UMR 9189), École Centrale de Lille, Villeneuve d'Ascq, 59650, France | |
kaust.person | Liu, Dayan | |
kaust.person | Laleg-Kirati, Taous-Meriem | |
dc.date.published-online | 2015-03-31 | |
dc.date.published-print | 2015-11 |
This item appears in the following Collection(s)
-
Articles
-
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Computational Bioscience Research Center (CBRC)
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/