Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment
Type
ArticleKAUST Department
Computational Bioscience Research Center (CBRC)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
Date
2015-03-31Online Publication Date
2015-03-31Print Publication Date
2015-11Permanent link to this record
http://hdl.handle.net/10754/622551
Metadata
Show full item recordAbstract
The integer order differentiation by integration method based on the Jacobi orthogonal polynomials for noisy signals was originally introduced by Mboup, Join and Fliess. We propose to extend this method from the integer order to the fractional order to estimate the fractional order derivatives of noisy signals. Firstly, two fractional order differentiators are deduced from the Jacobi orthogonal polynomial filter, using the Riemann-Liouville and the Caputo fractional order derivative definitions respectively. Exact and simple formulae for these differentiators are given by integral expressions. Hence, they can be used for both continuous-time and discrete-time models in on-line or off-line applications. Secondly, some error bounds are provided for the corresponding estimation errors. These bounds allow to study the design parameters' influence. The noise error contribution due to a large class of stochastic processes is studied in discrete case. The latter shows that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, whose mean value and variance functions are polynomial time-varying. Thanks to the design parameters analysis, the proposed fractional order differentiators are significantly improved by admitting a time-delay. Thirdly, in order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, the proposed differentiator based on the Riemann-Liouville fractional order derivative is used to estimate the state of a fractional order system and numerical simulations illustrate the accuracy and the robustness with respect to corrupting noises.Citation
Liu D-Y, Gibaru O, Perruquetti W, Laleg-Kirati T-M (2015) Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment. IEEE Transactions on Automatic Control 60: 2945–2960. Available: http://dx.doi.org/10.1109/TAC.2015.2417852.Additional Links
http://ieeexplore.ieee.org/document/7072464ae974a485f413a2113503eed53cd6c53
10.1109/TAC.2015.2417852