Show simple item record

dc.contributor.authorAlbi, Giacomo
dc.contributor.authorArtina, Marco
dc.contributor.authorForansier, Massimo
dc.contributor.authorMarkowich, Peter A.
dc.date.accessioned2017-01-02T09:55:28Z
dc.date.available2017-01-02T09:55:28Z
dc.date.issued2015-09-15
dc.identifier.citationAlbi G, Artina M, Foransier M, Markowich PA (2016) Biological transportation networks: Modeling and simulation. Analysis and Applications 14: 185–206. Available: http://dx.doi.org/10.1142/S0219530515400059.
dc.identifier.issn0219-5305
dc.identifier.issn1793-6861
dc.identifier.doi10.1142/S0219530515400059
dc.identifier.urihttp://hdl.handle.net/10754/622521
dc.description.abstractWe present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
dc.description.sponsorshipG. Albi and M. Foransier acknowledge the support of the ERC-starting Grant Project High-dimensional Sparse Optimal Control. This research was also supported by TUM through the Von Neumann Professorship of PAM.
dc.publisherWorld Scientific Pub Co Pte Lt
dc.subjectenergy dissipation
dc.subjectnumerical modeling
dc.subjectPattern formation
dc.subjectsingular limit
dc.subjectweak solutions
dc.titleBiological transportation networks: Modeling and simulation
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalAnalysis and Applications
dc.contributor.institutionM15-Fakultät Mathematik, Technische Universität München, Boltzmann straße 3, Garching bei Mnchen, D-85748, Germany
kaust.personMarkowich, Peter A.


This item appears in the following Collection(s)

Show simple item record