Show simple item record

dc.contributor.authorElmetennani, Shahrazed
dc.contributor.authorLaleg-Kirati, Taous-Meriem
dc.date.accessioned2017-01-02T09:55:28Z
dc.date.available2017-01-02T09:55:28Z
dc.date.issued2016-11-09
dc.identifier.citationElmetennani S, Laleg-Kirati TM (2016) Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors. IEEE Transactions on Control Systems Technology: 1–8. Available: http://dx.doi.org/10.1109/TCST.2016.2618908.
dc.identifier.issn1063-6536
dc.identifier.issn1558-0865
dc.identifier.doi10.1109/TCST.2016.2618908
dc.identifier.urihttp://hdl.handle.net/10754/622520
dc.description.abstractThis brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.
dc.description.sponsorshipKing Abdullah University of Science and Technology
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://ieeexplore.ieee.org/document/7740024/
dc.subjectsolar energy.
dc.subjectHyperbolic partial differential equation (PDE)
dc.subjectLyapunov control
dc.subjectphenomenological model
dc.subjectreduced order model approximation
dc.subjectrobust nonlinear control
dc.subjectsolar distributed concentrated collector
dc.titleBilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
dc.typeArticle
dc.contributor.departmentComputational Bioscience Research Center (CBRC)
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalIEEE Transactions on Control Systems Technology
kaust.personElmetennani, Shahrazed
kaust.personLaleg-Kirati, Taous-Meriem
dc.date.published-online2016-11-09
dc.date.published-print2017-09


This item appears in the following Collection(s)

Show simple item record