Show simple item record

dc.contributor.authorGomes, Diogo A.
dc.contributor.authorNurbekyan, Levon
dc.date.accessioned2017-01-02T09:55:27Z
dc.date.available2017-01-02T09:55:27Z
dc.date.issued2016-08-31
dc.identifier.citationGomes D, Nurbekyan L (2016) An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems 36: 6167–6185. Available: http://dx.doi.org/10.3934/dcds.2016069.
dc.identifier.issn1078-0947
dc.identifier.doi10.3934/dcds.2016069
dc.identifier.urihttp://hdl.handle.net/10754/622516
dc.description.abstractWe develop several aspects of the infinite-dimensional Weak KAM theory using a random variables' approach. We prove that the infinite-dimensional cell problem admits a viscosity solution that is a fixed point of the Lax-Oleinik semigroup. Furthermore, we show the existence of invariant minimizing measures and calibrated curves defined on R.
dc.description.sponsorshipThe first author was partially supported by KAUST baseline and start-up funds and KAUST SRI, Center for Uncertainty Quanti cation in Computational Science and Engineering.
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.urlhttp://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12901
dc.subjectDynamical systems
dc.subjectweak KAM theory
dc.subjectHamilton-Jacobi equations
dc.subjectvoscosity solutions
dc.titleAn infinite-dimensional weak KAM theory via random variables
dc.typeArticle
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalDiscrete and Continuous Dynamical Systems
dc.identifier.arxivid1508.00154
kaust.personGomes, Diogo A.
kaust.personNurbekyan, Levon
dc.date.published-online2016-08-31
dc.date.published-print2016-08


This item appears in the following Collection(s)

Show simple item record