A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2016-11-16Online Publication Date
2016-11-16Print Publication Date
2017-02Permanent link to this record
http://hdl.handle.net/10754/622499
Metadata
Show full item recordAbstract
A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.Citation
Omran H, Alhoshany A, Alahmadi H, Salama KN (2016) A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers: 1–12. Available: http://dx.doi.org/10.1109/TCSI.2016.2608905.Sponsors
The authors would like to thank the reviewers for their valuable and stimulating comments.Additional Links
http://ieeexplore.ieee.org/document/7744463/ae974a485f413a2113503eed53cd6c53
10.1109/TCSI.2016.2608905