• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tang, Xiaoyan
    Hong, Miao
    Falivene, Laura cc
    Caporaso, Lucia cc
    Cavallo, Luigi cc
    Chen, Eugene Y.-X. cc
    KAUST Department
    Chemical Science Program
    KAUST Catalysis Center (KCC)
    Physical Science and Engineering (PSE) Division
    Date
    2016-10-19
    Online Publication Date
    2016-10-19
    Print Publication Date
    2016-11-02
    Permanent link to this record
    http://hdl.handle.net/10754/622483
    
    Metadata
    Show full item record
    Abstract
    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.
    Citation
    Tang X, Hong M, Falivene L, Caporaso L, Cavallo L, et al. (2016) The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society 138: 14326–14337. Available: http://dx.doi.org/10.1021/jacs.6b07974.
    Sponsors
    This work was supported by the US National Science Foundation (NSF-1300267) for the study carried out at Colorado State University and by the funding from King Abdullah University of Science and Technology (KAUST) for the study performed at KAUST.
    Publisher
    American Chemical Society (ACS)
    Journal
    Journal of the American Chemical Society
    DOI
    10.1021/jacs.6b07974
    Additional Links
    http://dx.doi.org/10.1021/jacs.6b07974
    ae974a485f413a2113503eed53cd6c53
    10.1021/jacs.6b07974
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program; KAUST Catalysis Center (KCC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.