Penalized linear regression for discrete ill-posed problems: A hybrid least-squares and mean-squared error approach
Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2016-12-19Online Publication Date
2016-12-19Print Publication Date
2016-08Permanent link to this record
http://hdl.handle.net/10754/622448
Metadata
Show full item recordAbstract
This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model matrix. This perturbation is introduced to enhance the singular-value (SV) structure of the matrix and hence to provide a better solution. The proposed approach is derived to select the regularization parameter in a way that minimizes the mean-squared error (MSE) of the estimator. Numerical results demonstrate that the proposed approach outperforms a set of benchmark methods in most cases when applied to different scenarios of discrete ill-posed problems. Jointly, the proposed approach enjoys the lowest run-time and offers the highest level of robustness amongst all the tested methods.Citation
Suliman M, Ballal T, Kammoun A, Al-Naffouri TY (2016) Penalized linear regression for discrete ill-posed problems: A hybrid least-squares and mean-squared error approach. 2016 24th European Signal Processing Conference (EUSIPCO). Available: http://dx.doi.org/10.1109/EUSIPCO.2016.7760279.Sponsors
This work was supported by the King Abdulaziz City of Science and Technology (KACST) under Grant AT-34-345.Conference/Event name
24th European Signal Processing Conference, EUSIPCO 2016Additional Links
http://ieeexplore.ieee.org/document/7760279/ae974a485f413a2113503eed53cd6c53
10.1109/EUSIPCO.2016.7760279