Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids
Type
ArticleAuthors
Liu, MengxiaVoznyy, Oleksandr

Sabatini, Randy
Arquer, F. Pelayo García de
Munir, Rahim

Balawi, Ahmed

Lan, Xinzheng
Fan, Fengjia
Walters, Grant
Kirmani, Ahmad R.

Hoogland, Sjoerd
Laquai, Frédéric

Amassian, Aram

Sargent, Edward H.

KAUST Department
KAUST Solar Center (KSC)Material Science and Engineering Program
Organic Electronics and Photovoltaics Group
Physical Science and Engineering (PSE) Division
KAUST Grant Number
KUS-11-009-21Date
2016-11-14Online Publication Date
2016-11-14Print Publication Date
2017-02Permanent link to this record
http://hdl.handle.net/10754/622415
Metadata
Show full item recordAbstract
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.Citation
Liu M, Voznyy O, Sabatini R, García de Arquer FP, Munir R, et al. (2016) Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nature Materials. Available: http://dx.doi.org/10.1038/nmat4800.Sponsors
This publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. F.P.G.d.A. acknowledges financial support from the Connaught fund. A.H.B. and F.L. thank K. Vandewal for his contribution to the photothermal deflection spectroscopy set-up and M. Baier for help with the experiments. The authors thank E. Palmiano, L. Levina, R. Wolowiec, D. Kopilovic, G. Kim and F. Fan for their help during the course of study.Publisher
Springer NatureJournal
Nature MaterialsDOI
10.1038/nmat4800Additional Links
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4800.htmlae974a485f413a2113503eed53cd6c53
10.1038/nmat4800