• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Distinct metal-exchange pathways of doped Ag25 nanoclusters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bootharaju, Megalamane Siddaramappa cc
    Sinatra, Lutfan cc
    Bakr, Osman cc
    KAUST Department
    Functional Nanomaterials Lab (FuNL)
    KAUST Catalysis Center (KCC)
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016
    Permanent link to this record
    http://hdl.handle.net/10754/622389
    
    Metadata
    Show full item record
    Abstract
    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)(18)](2-) (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)(18)](2-) clusters to produce predominantly bimetallic [AuAg24(SR)(18)](-) clusters along with a minor product of an [Au2Ag23(SR)(18)](-) cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)(18)](2-) clusters, and gold replaced the noncentral Ag atoms to form trimetallic [AuxPtAg24-x(SR)(18)](2-) NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)(18)](2-) NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.
    Citation
    Bootharaju MS, Sinatra L, Bakr OM (2016) Distinct metal-exchange pathways of doped Ag25 nanoclusters. Nanoscale 8: 17333–17339. Available: http://dx.doi.org/10.1039/c6nr06353e.
    Sponsors
    Financial support for the work presented here was provided by KAUST.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Nanoscale
    DOI
    10.1039/c6nr06353e
    Additional Links
    http://pubs.rsc.org/en/Content/ArticleLanding/2016/NR/C6NR06353E
    ae974a485f413a2113503eed53cd6c53
    10.1039/c6nr06353e
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Catalysis Center (KCC); KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.