Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires
Type
ArticleAuthors
Asayesh-Ardakani, HastiNie, Anmin

Marley, Peter M.
Zhu, Yihan
Phillips, Patrick J.
Singh, Sujay
Mashayek, Farzad
Sambandamurthy, Ganapathy
Low, Ke Bin
Klie, Robert F.
Banerjee, Sarbajit
Odegard, Gregory M.
Shahbazian-Yassar, Reza

KAUST Department
Advanced Membranes and Porous Materials Research CenterDate
2015-10-16Online Publication Date
2015-10-16Print Publication Date
2015-11-11Permanent link to this record
http://hdl.handle.net/10754/622350
Metadata
Show full item recordAbstract
There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.Citation
Asayesh-Ardakani H, Nie A, Marley PM, Zhu Y, Phillips PJ, et al. (2015) Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2Nanowires. Nano Letters 15: 7179–7188. Available: http://dx.doi.org/10.1021/acs.nanolett.5b03219.Sponsors
R.S.Y. acknowledges financial support from the National Science Foundation (Award No. CMMI-1200383). The acquisition of the UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470). Support from the UIC Research Resources Center is also acknowledged. G.M.O. would like to acknowledge the use of SUPERIOR, a high-performance computing cluster at Michigan Technological University. P.M. and S.B. acknowledge support from the National Science Foundation under IIP 1311837 and from the Research Corporation for Science Advancement through a Cottrell Scholar Award. S.S. and G.S. are supported by National Science Foundation (DMR 0847324).Publisher
American Chemical Society (ACS)Journal
Nano LettersPubMed ID
26457771ae974a485f413a2113503eed53cd6c53
10.1021/acs.nanolett.5b03219
Scopus Count
Related articles
- Highly infrared sensitive VO(2) nanowires for a nano-optical device.
- Authors: Bhuyan PD, Gupta SK, Kumar A, Sonvane Y, Gajjar PN
- Issue date: 2018 Apr 25
- Electron-Proton Co-doping-Induced Metal-Insulator Transition in VO(2) Film via Surface Self-Assembled l-Ascorbic Acid Molecules.
- Authors: Li B, Xie L, Wang Z, Chen S, Ren H, Chen Y, Wang C, Zhang G, Jiang J, Zou C
- Issue date: 2019 Sep 23
- Metallization of vanadium dioxide driven by large phonon entropy.
- Authors: Budai JD, Hong J, Manley ME, Specht ED, Li CW, Tischler JZ, Abernathy DL, Said AH, Leu BM, Boatner LA, McQueeney RJ, Delaire O
- Issue date: 2014 Nov 27
- Depressed transition temperature of W(x)V(1-x)O2: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy.
- Authors: Wu Y, Fan L, Huang W, Chen S, Chen S, Chen F, Zou C, Wu Z
- Issue date: 2014 Sep 7
- Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti(4+)) Doping.
- Authors: Wu Y, Fan L, Liu Q, Chen S, Huang W, Chen F, Liao G, Zou C, Wu Z
- Issue date: 2015 May 7