Type
ArticleAuthors
Xu, GanggangGenton, Marc G.

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
Date
2016-09-21Online Publication Date
2016-09-21Print Publication Date
2016-11Permanent link to this record
http://hdl.handle.net/10754/622346
Metadata
Show full item recordAbstract
We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.Citation
Xu G, Genton MG (2016) Tukey max-stable processes for spatial extremes. Spatial Statistics 18: 431–443. Available: http://dx.doi.org/10.1016/j.spasta.2016.09.002.Publisher
Elsevier BVJournal
Spatial StatisticsAdditional Links
http://www.sciencedirect.com/science/article/pii/S2211675316300574ae974a485f413a2113503eed53cd6c53
10.1016/j.spasta.2016.09.002
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid processLee, Songbok; Kim,Youngjin; Hong, Seungkwan (Chemosphere, Elsevier BV, 2018-06-30) [Article]In this study, the feasibility of forward osmosis (FO) hybridized with membrane distillation (MD) was systematically investigated for treating flue gas desulfurization (FGD) wastewater. FO experiments were conducted using raw FGD wastewater obtained from a coal-fired power plant in Korea. Severe membrane fouling in FO was observed since FGD wastewater contained various components (i.e., particles, colloids, organics, and ions). The combined fouling layer by particulates and scales was identified via scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). Therefore, fouling control strategies were suggested and evaluated. Microfiltration (MF) pre-treatment was effective in removing particulates and mitigating the initial fouling. Antiscalant-blended draw solution (DS) could inhibit the formation of membrane scaling. With such fouling control schemes, FO achieved the highest recovery rate compared to other desalting processes (i.e., RO and MD), suggesting that FO is suitable for treating wastewater with high fouling potential and high TDS. Finally, the diluted DS was recovered by MD. MD could re-concentrate the diluted DS up to 50% recovery rate with no significant flux decline. Rapid flux decline was then observed due to membrane scaling. Thus, appropriate antiscalants in DS should be considered to inhibit scaling formation in FO and MD simultaneously.
-
Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of ProcessesSudhakaran, Sairam (2013-08) [Dissertation]
Advisor: Amy, Gary L.
Committee members: Khashab, Niveen M.; Lattemann, Sabine; Nunes, Suzana Pereira; Snyder, ShaneThe presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the QSAR - defining molecular descriptors help in detailed understanding of oxidation. The DSS can be considered as an aid in assessing a multi-barrier approach to remove OMPs. Hybrids of natural and advanced treatment processes help to develop a more sustainable multi-barrier approach for OMPs removal. -
Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operatorsShafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali (26th European Symposium on Computer Aided Process Engineering, Elsevier BV, 2016-06-25) [Book Chapter]In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we expand the role of GA to include flowsheet generation through proposing a modified Greedysub tour crossover operator. Performance of the proposed crossover operator is compared with four other commonly used operators. The proposed GA optimizationbased process synthesis method is applied to generate the optimum process flowsheet for a multicomponent membrane-based CO2 capture process. Within defined constraints and using the random-point crossover, CO2 purity of 0.827 (equivalent to 0.986 on dry basis) is achieved which results in improvement (3.4%) over the simplest crossover operator applied. In addition, the least variability in the converged flowsheet and CO2 purity is observed for random-point crossover operator, which approximately implies closeness of the solution to the global optimum, and hence the consistency of the algorithm. The proposed crossover operator is found to improve the convergence speed of the algorithm by 77.6%.