Show simple item record

dc.contributor.authorFarhat, Nadia
dc.contributor.authorStaal, M.
dc.contributor.authorBucs, Szilard
dc.contributor.authorVan Loosdrecht, M.C.M.
dc.contributor.authorVrouwenvelder, Johannes S.
dc.date.accessioned2017-01-02T09:08:26Z
dc.date.available2017-01-02T09:08:26Z
dc.date.issued2016-09-06
dc.identifier.citationFarhat NM, Staal M, Bucs SS, Van Loosdrecht MCM, Vrouwenvelder JS (2016) Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. Journal of Membrane Science 520: 964–971. Available: http://dx.doi.org/10.1016/j.memsci.2016.08.065.
dc.identifier.issn0376-7388
dc.identifier.doi10.1016/j.memsci.2016.08.065
dc.identifier.urihttp://hdl.handle.net/10754/622337
dc.description.abstractThe spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.
dc.description.abstractComparison of the inlet and outlet position of the MFS showed a more (i) heterogeneous biofilm distribution and a (ii) higher biological activity at the inlet side (first 2.5 cm) for all cross-flow velocities. The lowest cross-flow velocity had the highest biomass activity particularly at the inlet side. A better characterization of biofilm development, including the factors that influence the biofilm spatial heterogeneity in membrane systems with time, may help to develop effective strategies for biofouling control in membrane systems. (C) 2016 Elsevier B.V. All rights reserved.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0376738816309905
dc.subjectLead membrane module
dc.subjectNon-destructive imaging
dc.subjectReverse osmosis (RO)
dc.subjectDesalination
dc.subjectWater reuse
dc.titleSpatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalJournal of Membrane Science
dc.contributor.institutionDelft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, Delft, HZ, Netherlands
dc.contributor.institutionWetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, Netherlands
kaust.personFarhat, Nadia
kaust.personBucs, Szilard
kaust.personVrouwenvelder, Johannes S.
dc.date.published-online2016-09-06
dc.date.published-print2016-12


This item appears in the following Collection(s)

Show simple item record