Performance and emissions of gasoline blended with terpineol as an octane booster
Type
ArticleKAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
high-pressure combustion (HPC) Research Group
Date
2016-11-10Online Publication Date
2016-11-10Print Publication Date
2017-02Permanent link to this record
http://hdl.handle.net/10754/622326
Metadata
Show full item recordAbstract
This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier LtdCitation
Vallinayagam R, Vedharaj S, Roberts WL, Dibble RW, Sarathy SM (2017) Performance and emissions of gasoline blended with terpineol as an octane booster. Renewable Energy 101: 1087–1093. Available: http://dx.doi.org/10.1016/j.renene.2016.09.055.Sponsors
This work was funded by competitive research funding from King Abdullah University of Science and Technology (KAUST) under the Clean Combustion Research Center's Future Fuels program. We also acknowledge funding from KAUST and Saudi Aramco under the FUELCOM program. Finally, we would like to express our gratitude to our Research Technician, Adrian. I. Ichim for his support in carrying out the engine experiments at KAUST engine lab.Publisher
Elsevier BVJournal
Renewable EnergyAdditional Links
http://www.sciencedirect.com/science/article/pii/S096014811630845Xae974a485f413a2113503eed53cd6c53
10.1016/j.renene.2016.09.055