Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

Abstract
This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

Citation
Eleiwi F, Laleg-Kirati TM (2016) Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant. Journal of Process Control 47: 78–86. Available: http://dx.doi.org/10.1016/j.jprocont.2016.08.013.

Acknowledgements
The authors appreciate the time and the useful discussion of Dr. Noreddine Ghaffour from Water Desalination and Reuse Center at KAUST, and thank him for providing the experimental parameters of the DCMD system. In addition the authors acknowledge that this work is totally funded by KAUST.

Publisher
Elsevier BV

Journal
Journal of Process Control

DOI
10.1016/j.jprocont.2016.08.013

Additional Links
http://www.sciencedirect.com/science/article/pii/S0959152416301147

Permanent link to this record