• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Multilevel sequential Monte Carlo samplers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Beskos, Alexandros
    Jasra, Ajay cc
    Law, Kody
    Tempone, Raul cc
    Zhou, Yan
    KAUST Department
    Applied Mathematics and Computational Science Program
    Center for Uncertainty Quantification in Computational Science and Engineering (SRI-UQ)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2016-08-29
    Online Publication Date
    2016-08-29
    Print Publication Date
    2017-05
    Permanent link to this record
    http://hdl.handle.net/10754/622315
    
    Metadata
    Show full item record
    Abstract
    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.
    Citation
    Beskos A, Jasra A, Law K, Tempone R, Zhou Y (2016) Multilevel sequential Monte Carlo samplers. Stochastic Processes and their Applications. Available: http://dx.doi.org/10.1016/j.spa.2016.08.004.
    Sponsors
    AJ, KL & YZ were supported by an AcRF tier 2 grant: R-155-000-143-112. AJ is affiliated with the Risk Management Institute and the Center for Quantitative Finance at NUS. RT, KL & AJ were additionally supported by King Abdullah University of Science and Technology (KAUST). KL was further supported by ORNLDRD Strategic Hire grant. AB was supported by the Leverhulme Trust Prize. We thank the referees for their comments which have greatly improved the article.
    Publisher
    Elsevier BV
    Journal
    Stochastic Processes and their Applications
    DOI
    10.1016/j.spa.2016.08.004
    arXiv
    1503.07259
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0304414916301326
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.spa.2016.08.004
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.