• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hu, Longhua
    Lu, Yong
    Yoshioka, Kosuke
    Zhang, Yangshu
    Fernandez-Pello, Carlos
    Chung, Suk Ho cc
    Fujita, Osamu cc
    KAUST Department
    Clean Combustion Research Center
    Combustion and Laser Diagnostics Laboratory
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-10-02
    Online Publication Date
    2016-10-02
    Print Publication Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/622307
    
    Metadata
    Show full item record
    Abstract
    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire's direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire's direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow speeds) to LOC under microgravity conditions.
    Citation
    Hu L, Lu Y, Yoshioka K, Zhang Y, Fernandez-Pello C, et al. (2016) Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2016.09.021.
    Sponsors
    This work was supported by Key Project of National Natural Science Foundation of China (NSFC) under Grant No. 51636008, the Excellent Young Scientist Fund of the National Natural Science Foundation of China (NSFC) under grant no. 51422606, Newton Advanced Fellowship (NSFC: 51561130158; RS: NA140102), Key Research Program of Frontier Sciences, CAS under Grant No. QYZDB-SSW-JSC029, the Fok Ying-Tong Education Foundation under grant no. 151056, Fundamental Research Funds for the Central Universities under Grant Nos. WK2320000035, and JSPS Fellowship (P12360) to Longhua Hu, by JAXA to Osamu Fujita as a candidate experiment for the third stage use of JEM/ISS titled “Evaluation of gravity impact on combustion phenomenon of solid material towards higher fire safety”, and by King Abdullah University of Science and Technology (KAUST) to Suk Ho Chung.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2016.09.021
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S1540748916304990
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2016.09.021
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.