Show simple item record

dc.contributor.authorGuiberti, Thibault
dc.contributor.authorJuddoo, M.
dc.contributor.authorLacoste, Deanna
dc.contributor.authorDunn, M. J.
dc.contributor.authorRoberts, William L.
dc.contributor.authorMasri, A. R.
dc.date.accessioned2017-01-02T09:08:24Z
dc.date.available2017-01-02T09:08:24Z
dc.date.issued2016-10-11
dc.identifier.citationGuiberti TF, Juddoo M, Lacoste DA, Dunn MJ, Roberts WL, et al. (2016) Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2016.08.051.
dc.identifier.issn1540-7489
dc.identifier.doi10.1016/j.proci.2016.08.051
dc.identifier.urihttp://hdl.handle.net/10754/622294
dc.description.abstractThis paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.
dc.description.sponsorshipAustralian Research Council
dc.publisherElsevier BV
dc.subjectFlame stability
dc.subjectInhomogeneous inlets
dc.subjectPiloted flames
dc.subjectTurbulent flames
dc.titleFuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmenthigh-pressure combustion (HPC) Research Group
dc.identifier.journalProceedings of the Combustion Institute
dc.contributor.institutionSchool of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 Australia
kaust.personGuiberti, Thibault
kaust.personLacoste, Deanna
kaust.personRoberts, William L.
refterms.dateFOA2019-11-20T09:57:20Z
dc.date.published-online2016-10-11
dc.date.published-print2017


Files in this item

Thumbnail
Name:
Guiberti_PROCI_2016_preproof (1).pdf
Size:
2.440Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record