Show simple item record

dc.contributor.authorKim, Gyeong Taek
dc.contributor.authorPark, Daegeun
dc.contributor.authorCha, Min Suk
dc.contributor.authorPark, Jeong
dc.contributor.authorChung, Suk Ho
dc.date.accessioned2017-01-02T09:08:24Z
dc.date.available2017-01-02T09:08:24Z
dc.date.issued2016-10-13
dc.identifier.citationKim GT, Park DG, Cha MS, Park J, Chung SH (2016) Flow instability in laminar jet flames driven by alternating current electric fields. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2016.09.015.
dc.identifier.issn1540-7489
dc.identifier.doi10.1016/j.proci.2016.09.015
dc.identifier.urihttp://hdl.handle.net/10754/622293
dc.description.abstractThe effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.
dc.publisherElsevier BV
dc.subjectElectric field
dc.subjectJet flow instability
dc.subjectTwin jet flame
dc.titleFlow instability in laminar jet flames driven by alternating current electric fields
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentCombustion and Laser Diagnostics Laboratory
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalProceedings of the Combustion Institute
dc.contributor.institutionInterdisciplinary Program of Biomechanical Engineering, Pukyong National University, Busan, Republic of Korea
kaust.personPark, Daegeun
kaust.personCha, Min Suk
kaust.personChung, Suk Ho
dc.date.published-online2016-10-13
dc.date.published-print2017


This item appears in the following Collection(s)

Show simple item record