Show simple item record

dc.contributor.authorWang, Hsin Ping
dc.contributor.authorLi, An Cheng
dc.contributor.authorLin, Tzu Yin
dc.contributor.authorHe, Jr-Hau
dc.date.accessioned2017-01-02T09:08:23Z
dc.date.available2017-01-02T09:08:23Z
dc.date.issued2016-03-02
dc.identifier.citationWang H-P, Li A-C, Lin T-Y, He J-H (2016) Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells. Nano Energy 23: 1–6. Available: http://dx.doi.org/10.1016/j.nanoen.2016.02.034.
dc.identifier.issn2211-2855
dc.identifier.doi10.1016/j.nanoen.2016.02.034
dc.identifier.urihttp://hdl.handle.net/10754/622282
dc.description.abstractThe Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (V). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (J) and V). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced V by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S2211285516000859
dc.subjectHeterojunction
dc.subjectInverted pyramid
dc.subjectPhoton management
dc.subjectSolar cells
dc.titleConcurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.identifier.journalNano Energy
kaust.personWang, Hsin Ping
kaust.personLi, An Cheng
kaust.personLin, Tzu Yin
kaust.personHe, Jr-Hau
dc.date.published-online2016-03-02
dc.date.published-print2016-05


This item appears in the following Collection(s)

Show simple item record