Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramComputational Bioscience Research Center (CBRC)
Computer Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Office of the VP
Date
2016-07-28Online Publication Date
2016-07-28Print Publication Date
2016-12Permanent link to this record
http://hdl.handle.net/10754/622264
Metadata
Show full item recordAbstract
We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.Citation
Chikalov I, Hussain S, Moshkov M (2016) Totally optimal decision trees for Boolean functions. Discrete Applied Mathematics 215: 1–13. Available: http://dx.doi.org/10.1016/j.dam.2016.07.009.Sponsors
Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). Authors acknowledge valuable comments and suggestions by anonymous reviewers that clearly improved the readability of this work and helped prove the two hypotheses.Publisher
Elsevier BVJournal
Discrete Applied Mathematicsae974a485f413a2113503eed53cd6c53
10.1016/j.dam.2016.07.009