Time Discretization Techniques

Type
Book Chapter

Authors
Gottlieb, S.
Ketcheson, David I.

KAUST Department
Applied Mathematics and Computational Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Online Publication Date
2016-10-12

Print Publication Date
2016

Date
2016-10-12

Abstract
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

Citation
Gottlieb S, Ketcheson DI (2016) Time Discretization Techniques. Handbook of Numerical Methods for Hyperbolic Problems - Basic and Fundamental Issues: 549–583. Available: http://dx.doi.org/10.1016/bs.hna.2016.08.001.

Publisher
Elsevier BV

Journal
Handbook of Numerical Analysis

DOI
10.1016/bs.hna.2016.08.001

Permanent link to this record