Show simple item record

dc.contributor.authorAlshareef, Husam N.
dc.contributor.authorWhitehair, Daniel
dc.contributor.authorXia, Chuan
dc.date.accessioned2017-01-02T08:42:40Z
dc.date.available2017-01-02T08:42:40Z
dc.date.issued2016-12-23
dc.identifier.citationAlshareef NH, Whitehair D, Xia C (2016) The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes. Journal of Electronic Materials. Available: http://dx.doi.org/10.1007/s11664-016-5206-x.
dc.identifier.issn0361-5235
dc.identifier.issn1543-186X
dc.identifier.doi10.1007/s11664-016-5206-x
dc.identifier.urihttp://hdl.handle.net/10754/622258
dc.description.abstractIn this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.
dc.description.sponsorshipResearch reported in this publication has been supported by King Abdullah University of Science and Technology (KAUST). NHA would like to thank the KAUST High School staff, particularly Dr. Christos N. Hadjichristidis for several useful discus- sions, and Ms. Edwige Thivin-Boutry for her kind advice throughout the personal project research.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/article/10.1007%2Fs11664-016-5206-x
dc.subjectPalm-leaf-derived carbon
dc.subjectsupercapacitor
dc.subjectenergy storage
dc.subjecthigh energy density
dc.titleThe Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes
dc.typeArticle
dc.contributor.departmentMaterials Science and Engineering Program
dc.identifier.journalJournal of Electronic Materials
kaust.personAlshareef, Husam N.
kaust.personWhitehair, Daniel
kaust.personXia, Chuan


This item appears in the following Collection(s)

Show simple item record