Show simple item record

dc.contributor.authorManoj Kumar Reddy, P.
dc.contributor.authorCha, Min Suk
dc.date.accessioned2017-01-02T08:42:40Z
dc.date.available2017-01-02T08:42:40Z
dc.date.issued2016-08-23
dc.identifier.citationManoj Kumar Reddy P, Cha MS (2016) Selective control of reformed composition of n-heptane via plasma chemistry. Fuel 186: 150–156. Available: http://dx.doi.org/10.1016/j.fuel.2016.08.063.
dc.identifier.issn0016-2361
dc.identifier.doi10.1016/j.fuel.2016.08.063
dc.identifier.urihttp://hdl.handle.net/10754/622249
dc.description.abstractThis paper presents experimental results for reforming n-heptane in a temperature-controlled dielectric barrier discharge reactor to show detailed chemical composition in the products and to propose a potential method to control the product composition. Reformed products of n-heptane and water mixture in an inert Ar feed could be identified as hydrogen, carbon monoxide, oxygenates, and various hydrocarbons, having a wide range of carbon numbers. To selectively increase production of short-chain hydrocarbons, Ar was replaced by CH4. An increased pool of methyl radicals, via plasma chemistry of CH4, might facilitate to stabilize intermediate alkyls (R) into RCH3, which successfully increased short-chain hydrocarbon concentration. When CO2 was supplied instead of Ar (to provide enriched OH and O radicals), significantly higher oxygenate concentrations were obtained through the stabilization of alkyls as ROH (alcohol), and RC([Formula presented])R′ (ketone). The use of methane and carbon dioxide as feed to tailor the products of plasma-assisted reforming of n-heptane with methyl (CH3), or O radicals, is successfully demonstrated in the presence of water vapor. Detailed product analysis, such as product selection, rates and energy efficiency using a gas chromatograph and a gas chromatography mass spectrometer, will be elaborated upon. © 2016 Elsevier Ltd
dc.description.sponsorshipResearch reported in this publication was supported by Competitive Research Funding from King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0016236116308018
dc.subjectHeptane
dc.subjectOxygenates
dc.subjectPlasma reforming
dc.subjectSyngas
dc.subjectSynthetic liquid
dc.titleSelective control of reformed composition of n-heptane via plasma chemistry
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalFuel
kaust.personManoj Kumar Reddy, P.
kaust.personCha, Min Suk
dc.date.published-online2016-08-23
dc.date.published-print2016-12


This item appears in the following Collection(s)

Show simple item record