Show simple item record

dc.contributor.authorNaser, Nimal
dc.contributor.authorYang, Seung Yeon
dc.contributor.authorKalghatgi, Gautam
dc.contributor.authorChung, Suk Ho
dc.date.accessioned2017-01-02T08:42:40Z
dc.date.available2017-01-02T08:42:40Z
dc.date.issued2016-09-21
dc.identifier.citationNaser N, Yang SY, Kalghatgi G, Chung SH (2017) Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel 187: 117–127. Available: http://dx.doi.org/10.1016/j.fuel.2016.09.013.
dc.identifier.issn0016-2361
dc.identifier.doi10.1016/j.fuel.2016.09.013
dc.identifier.urihttp://hdl.handle.net/10754/622241
dc.description.abstractA methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipThis work was supported by Saudi Aramco under the FUELCOM program and the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0016236116308729
dc.subjectOctane index
dc.subjectOctane numbers
dc.subjectIgnition quality tester
dc.subjectAutoignition
dc.subjectCombustion
dc.subjectGasoline
dc.subjectDerived cetane number
dc.titleRelating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentCombustion and Laser Diagnostics Laboratory
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalFuel
dc.contributor.institutionSaudi Aramco Research and Development Center, Fuel Technology Research and Development Division, Dhahran, Saudi Arabia
kaust.personNaser, Nimal
kaust.personYang, Seung Yeon
kaust.personChung, Suk Ho
dc.date.published-online2016-09-21
dc.date.published-print2017-01


This item appears in the following Collection(s)

Show simple item record