Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2016-10-08Online Publication Date
2016-10-08Print Publication Date
2017-01Permanent link to this record
http://hdl.handle.net/10754/622234
Metadata
Show full item recordAbstract
Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.Citation
Thu K, Yanagi H, Saha BB, Ng KC (2017) Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme. Desalination 402: 88–96. Available: http://dx.doi.org/10.1016/j.desal.2016.09.027.Sponsors
Kyushu University Program for Leading Graduate SchoolGreen Asia Education Center
Publisher
Elsevier BVJournal
Desalinationae974a485f413a2113503eed53cd6c53
10.1016/j.desal.2016.09.027