• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Path planning in uncertain flow fields using ensemble method

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Tong cc
    Le Maître, Olivier P.
    Hoteit, Ibrahim cc
    Knio, Omar cc
    KAUST Department
    Applied Mathematics and Computational Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Earth Fluid Modeling and Prediction Group
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-08-20
    Online Publication Date
    2016-08-20
    Print Publication Date
    2016-10
    Permanent link to this record
    http://hdl.handle.net/10754/622233
    
    Metadata
    Show full item record
    Abstract
    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
    Citation
    Wang T, Le Maître OP, Hoteit I, Knio OM (2016) Path planning in uncertain flow fields using ensemble method. Ocean Dynamics 66: 1231–1251. Available: http://dx.doi.org/10.1007/s10236-016-0979-2.
    Sponsors
    This work was supported in part by the Uncertainty Quantification Center at King Abdullah University of Science and Technology.
    Publisher
    Springer Nature
    Journal
    Ocean Dynamics
    DOI
    10.1007/s10236-016-0979-2
    Additional Links
    http://link.springer.com/article/10.1007%2Fs10236-016-0979-2
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10236-016-0979-2
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.