• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Optimized reaction mechanism rate rules for ignition of normal alkanes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rate_rules_final_removed.pdf
    Size:
    846.9Kb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Thumbnail
    Name:
    ScienceDirect_files_10Sep2023_13-41-44.328.zip
    Size:
    27.58Mb
    Format:
    application/zip
    Description:
    Supplementary material
    Download
    Type
    Article
    Authors
    Cai, Liming
    Pitsch, Heinz
    Mohamed, Samah cc
    Raman, Venkat
    Bugler, John
    Curran, Henry J. cc
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Physical Science and Engineering (PSE) Division
    Date
    2016-08-11
    Online Publication Date
    2016-08-11
    Print Publication Date
    2016-11
    Embargo End Date
    2018-08-11
    Permanent link to this record
    http://hdl.handle.net/10754/622230
    
    Metadata
    Show full item record
    Abstract
    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.
    Citation
    Cai L, Pitsch H, Mohamed SY, Raman V, Bugler J, et al. (2016) Optimized reaction mechanism rate rules for ignition of normal alkanes. Combustion and Flame 173: 468–482. Available: http://dx.doi.org/10.1016/j.combustflame.2016.04.022.
    Sponsors
    This work was performed within the Cluster of Excellence "Tailor-Made Fuels from Biomass", which is funded by the Excellence Initiative of the German federal state governments to promote science and research at German universities. The authors also acknowledge funding support from the Clean Combustion Research Center and Saudi Aramco under the FUELCOM program. VR was supported by SERDP Grant WP-2151 with Dr. Robin Nissan as Program Manager. NUI Galway would like to acknowledge the support of the Irish Research Council in funding this work. We would like to thank Dr. Krithika Narayanaswamy, Mr. Leif Kroger, and Mr. Christoph Thies for their support with numerical calculations and Dr. Sungwoo Park (KAUST) for his help with developing the kinetic model.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2016.04.022
    Additional Links
    https://aran.library.nuigalway.ie/bitstream/10379/6261/1/Rate_rules_final.pdf
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2016.04.022
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.