Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2016-11-01Online Publication Date
2016-11-01Print Publication Date
2016-12Permanent link to this record
http://hdl.handle.net/10754/622228
Metadata
Show full item recordAbstract
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.Citation
Gomes DA, Nurbekyan L, Sedjro M (2016) One-Dimensional Forward–Forward Mean-Field Games. Applied Mathematics & Optimization 74: 619–642. Available: http://dx.doi.org/10.1007/s00245-016-9384-y.Sponsors
The authors were supported by KAUST baseline and start-up funds.Publisher
Springer NaturearXiv
1606.09064Additional Links
http://link.springer.com/article/10.1007%2Fs00245-016-9384-yae974a485f413a2113503eed53cd6c53
10.1007/s00245-016-9384-y