• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Multi-scale high-performance fluid flow: Simulations through porous media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Perović, Nevena
    Frisch, Jérôme
    Salama, Amgad cc
    Sun, Shuyu cc
    Rank, Ernst
    Mundani, Ralf Peter
    KAUST Department
    Computational Transport Phenomena Lab
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-08-03
    Online Publication Date
    2016-08-03
    Print Publication Date
    2017-01
    Permanent link to this record
    http://hdl.handle.net/10754/622221
    
    Metadata
    Show full item record
    Abstract
    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy's law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.
    Citation
    Perović N, Frisch J, Salama A, Sun S, Rank E, et al. (2017) Multi-scale high-performance fluid flow: Simulations through porous media. Advances in Engineering Software 103: 85–98. Available: http://dx.doi.org/10.1016/j.advengsoft.2016.07.016.
    Publisher
    Elsevier BV
    Journal
    Advances in Engineering Software
    DOI
    10.1016/j.advengsoft.2016.07.016
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.advengsoft.2016.07.016
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program; Computational Transport Phenomena Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.