Show simple item record

dc.contributor.authorZhou, Kun
dc.contributor.authorJiang, Xiao
dc.contributor.authorSun, Ke
dc.contributor.authorHe, Zhu
dc.date.accessioned2017-01-02T08:42:37Z
dc.date.available2017-01-02T08:42:37Z
dc.date.issued2016-09-23
dc.identifier.citationZhou K, Jiang X, Sun K, He Z (2016) Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer. Applied Mathematics and Mechanics 37: 1305–1314. Available: http://dx.doi.org/10.1007/s10483-016-2134-9.
dc.identifier.issn0253-4827
dc.identifier.issn1573-2754
dc.identifier.doi10.1007/s10483-016-2134-9
dc.identifier.urihttp://hdl.handle.net/10754/622195
dc.description.abstractThe formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
dc.description.sponsorshipProject supported by the National Natural Science Foundation of China (Nos. 11402179 and 11572274)
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/article/10.1007%2Fs10483-016-2134-9
dc.subjectturbulent mixing layer
dc.subjectaerosol dynamics
dc.subjectMonte Carlo (MC) simulation
dc.titleEulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.identifier.journalApplied Mathematics and Mechanics
dc.contributor.institutionThe State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
kaust.personZhou, Kun
dc.date.published-online2016-09-23
dc.date.published-print2016-10


This item appears in the following Collection(s)

Show simple item record