• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Nobile, F.
    Tamellini, L.
    Tempone, Raul cc
    KAUST Department
    Applied Mathematics and Computational Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2015-10-30
    Online Publication Date
    2015-10-30
    Print Publication Date
    2016-10
    Permanent link to this record
    http://hdl.handle.net/10754/622185
    
    Metadata
    Show full item record
    Abstract
    In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.
    Citation
    Nobile F, Tamellini L, Tempone R (2015) Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs. Numerische Mathematik 134: 343–388. Available: http://dx.doi.org/10.1007/s00211-015-0773-y.
    Sponsors
    The authors would like to recognize the support of King Abdullah University of Science and Technology (KAUST) AEA project "Predictability and Uncertainty Quantification for Models of Porous Media" and University of Texas at Austin AEA Rnd 3 "Uncertainty quantification for predictive mobdeling of the dissolution of porous and fractured media". F. Nobile and L. Tamellini have been partially supported by the Italian grant FIRB-IDEAS (Project n. RBID08223Z) "Advanced numerical techniques for uncertainty quantification in engineering and life science problems" and by the Swiss National Science Foundation under the Project No. 140574 "Efficient numerical methods for flow and transport phenomena in heterogeneous random porous media". They also received partial support from the Center for ADvanced MOdeling Science (CADMOS). R. Tempone is a member of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering. We acknowledge the usage of the Matlab (R) functions patterson_rule.m by J. Burkardt (http://people.sc.fsu.edu/similar to jburkardt/m_src/patterson_rule/patterson_rule.html) for the computation of Gauss-Patterson points and lejapoints. m by M. Caliari (http://profs.sci.univr.it/similar to caliari/software/lejapoints.m) for the computation of symmetrized Leja points.
    Publisher
    Springer Nature
    Journal
    Numerische Mathematik
    DOI
    10.1007/s00211-015-0773-y
    ae974a485f413a2113503eed53cd6c53
    10.1007/s00211-015-0773-y
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.