Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture
Type
ArticleKAUST Department
Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-08-29Online Publication Date
2016-08-29Print Publication Date
2016-11Permanent link to this record
http://hdl.handle.net/10754/622180
Metadata
Show full item recordAbstract
Three different architectures of 3D carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) were tested in quasi-static uniaxial tension. Mechanical tests (tensile in on-axis of warp and weft directions as well as 45 degrees off-axis) were carried out with the aim to study the loading direction sensitivity of these 3D woven composites. The z-binder architecture (the through-thickness reinforcement) has an effect on void content, directional fibre volume fraction, mechanical properties (on-axis and off-axis), failure mechanisms, energy absorption and fibre rotation angle in off-axis tested specimens. Out of all the examined architectures, 3D orthogonal woven composites (ORT) demonstrated a superior behaviour, especially when they were tested in 45 degrees off-axis direction, indicated by high strain to failure (similar to 23%) and high translaminar energy absorption (similar to 40 MJ/m(3)). The z-binder yarns in ORT architecture suppress the localised damage and allow larger fibre rotation during the fibreCitation
Saleh MN, Yudhanto A, Potluri P, Lubineau G, Soutis C (2016) Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture. Composites Part A: Applied Science and Manufacturing 90: 577–588. Available: http://dx.doi.org/10.1016/j.compositesa.2016.08.028.Sponsors
Authors would like to acknowledge the financial support from University of Manchester (UoM) and from Baseline Research Funds from King Abdullah University of Science and Technology (KAUST). We also acknowledge the technical support from the Northwest Composites Certification and Evaluation Facility (NCCEF). We would also like to thank Dr. Adam Joesbury from NCCEF for his helpful technical discussions.Publisher
Elsevier BVAdditional Links
http://www.sciencedirect.com/science/article/pii/S1359835X16302846ae974a485f413a2113503eed53cd6c53
10.1016/j.compositesa.2016.08.028