An effective suggestion method for keyword search of databases
dc.contributor.author | Huang, Hai | |
dc.contributor.author | Chen, Zonghai | |
dc.contributor.author | Liu, Chengfei | |
dc.contributor.author | Huang, He | |
dc.contributor.author | Zhang, Xiangliang | |
dc.date.accessioned | 2017-01-02T08:42:35Z | |
dc.date.available | 2017-01-02T08:42:35Z | |
dc.date.issued | 2016-09-09 | |
dc.identifier.citation | Huang H, Chen Z, Liu C, Huang H, Zhang X (2016) An effective suggestion method for keyword search of databases. World Wide Web. Available: http://dx.doi.org/10.1007/s11280-016-0413-1. | |
dc.identifier.issn | 1386-145X | |
dc.identifier.issn | 1573-1413 | |
dc.identifier.doi | 10.1007/s11280-016-0413-1 | |
dc.identifier.uri | http://hdl.handle.net/10754/622171 | |
dc.description.abstract | This paper solves the problem of providing high-quality suggestions for user keyword queries over databases. With the assumption that the returned suggestions are independent, existing query suggestion methods over databases score candidate suggestions individually and return the top-k best of them. However, the top-k suggestions have high redundancy with respect to the topics. To provide informative suggestions, the returned k suggestions are expected to be diverse, i.e., maximizing the relevance to the user query and the diversity with respect to topics that the user might be interested in simultaneously. In this paper, an objective function considering both factors is defined for evaluating a suggestion set. We show that maximizing the objective function is a submodular function maximization problem subject to n matroid constraints, which is an NP-hard problem. An greedy approximate algorithm with an approximation ratio O((Formula presented.)) is also proposed. Experimental results show that our suggestion outperforms other methods on providing relevant and diverse suggestions. © 2016 Springer Science+Business Media New York | |
dc.publisher | Springer Nature | |
dc.relation.url | http://link.springer.com/article/10.1007%2Fs11280-016-0413-1 | |
dc.subject | Query reformulation and keyword recommendation | |
dc.subject | Query suggestion | |
dc.title | An effective suggestion method for keyword search of databases | |
dc.type | Article | |
dc.contributor.department | Computer Science Program | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.identifier.journal | World Wide Web | |
dc.contributor.institution | Department of Automation, University of Science and Technology of China, Hefei, China | |
dc.contributor.institution | Faculty of ICT, Swinburne University of Technology, Melbourne Vic, Australia | |
dc.contributor.institution | Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China | |
kaust.person | Zhang, Xiangliang | |
dc.date.published-online | 2016-09-09 | |
dc.date.published-print | 2017-07 |
This item appears in the following Collection(s)
-
Articles
-
Computer Science Program
For more information visit: https://cemse.kaust.edu.sa/cs -
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/